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Flow rate and electric current emitted by a
Taylor cone
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ETS Ingenieros Aeronáuticos, Plaza Cardenal Cisneros 3, 28040 Madrid, Spain

(Received 11 March 2002 and in revised form 21 January 2003)

Under certain conditions, the free surface of a conducting liquid subject to an electric
field elongates into a cone whose apex emits a thin stationary jet that carries an electric
current. The structure of the flow in the cone-to-jet transition region is investigated
here, assuming that the size of this region is small compared with any other length
of the system where the conical meniscus is formed. The local problem depends
then on three non-dimensional parameters, two of which are properties of the liquid
while the third measures the flow rate injected through the meniscus. Numerical
solutions are computed and the electric current is determined as a function of these
parameters. A qualitative asymptotic analysis of the physically important limit of
large non-dimensional flow rates gives an electric current increasing as the square
root of the flow rate and independent of the dielectric constant of the liquid. When
the inertia of the liquid is taken into account, the flow in this asymptotic limit is
effectively inviscid in the bulk of the transition region, where the electric current is
dominated by conduction in the liquid and the surface is close to an equipotential
of the electric field in the gas. The effects of the viscosity of the liquid, the current
transported by convection of the surface charge, and the electric shear at the surface
come into play in a slender region of the jet. The limit of small non-dimensional flow
rates is briefly discussed.

1. Introduction
When the meniscus of an electrically conducting liquid is subject to an electric

field, electric charge is induced at the surface of the liquid and an electric stress
appears that stretches the meniscus in the direction of the field. If the electric field
is sufficiently strong and liquid is continuously supplied, then the meniscus becomes
a cone whose apex may either pulsate and shed charged drops or emit a thin
stationary jet that breaks into charged drops only at some distance downstream of
the cone. This phenomenon is the basis of a number of applications in different fields
(Bailey 1988; Grace & Marijnissen 1994). The second regime, termed the cone–jet
regime by Cloupeau & Prunet-Foch (1989), is of special interest in the generation
of monodisperse sprays of ultrafine drops, the size of which can be controlled in
the micrometer to nanometer range mainly by varying the injected flow rate and the
electrical conductivity of the liquid. Other applications include mass spectrometry of
macromolecules (Fenn et al. 1989; Smith et al. 1991) and space thrusters (Martı́nez-
Sánchez et al. 1999; Mueller 2000, and references therein). Loscertales et al. (2002)
discuss a recent application to the generation of capsules.

Analysis of these flows began with the pioneering works of Zeleny (1914, 1915,
1917) and Vonnegut & Neubauer (1952), while Taylor (1964) explained the hydrostatic
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equilibrium of surface tension and electric stress responsible for the conical meniscus
in the absence of motion. Further work aimed at determining the electric current
and the size of the drops as functions of the flow rate, the properties of the liquid
and the conditions of the experiments, as well as to clarify the forces driving the
flow and the different modes of operation of an electrospray, was carried out by
Jones & Thong (1971), Mutoh, Kaieda & Kamimura (1979), Smith (1986), Hayati,
Bailey & Tadros (1986, 1987a, b), Cloupeau & Prunet-Foch (1989, 1990, 1994), Gomez
& Tang (1994) and Chen, Pui & Kaufman (1995), among others. Fernández de la
Mora (1992) proposed a model of the spray in which the drops occupy a cone
whose apex coincides with that of the meniscus and found that, in agreement with
experiments with flow-injecting menisci, the angle of the meniscus is not a constant
but depends on the angle of the spray when the space charge of the drops is taken
into account. Lagrangian models have been developed by Gañán-Calvo et al. (1994b)
and Hartman et al. (1999) to follow the drops of the spray. Mestel (1994) discusses
two models of high-Reynolds-number recirculating flows in conical menisci, one of
which allows for angles different from the Taylor angle.

The experimental and theoretical investigation of the mechanics of the flow
with the purpose of finding scaling laws of the current and size of the drops
emitted by a Taylor cone was initiated by Fernández de la Mora et al. (1990),
whose inertial scaling of the radius of the jet fits numerous data in the literature.
Working with liquids of high electrical conductivity to minimize the influence of the
surrounding electrostatic environment, Fernández de la Mora & Loscertales (1994)
find a square-root dependence of the electric current on the flow rate, which they
explain theoretically by considering the sink flow established in the conical meniscus
by the injected flow rate and estimating the electric current as that due to the
convection of the equilibrium surface charge of the Taylor solution by the sink flow
in a relaxation region around the apex where electric relaxation ceases to be able to
maintain the equilibrium of surface charge. This happens because the residence time
of the flow in the relaxation region is of the order of the electric relaxation time, a
property of the liquid equal to the ratio of its permittivity to its electrical conductivity.
In addition, and in agreement with their experimental results, these authors take the
size of the relaxation region as an estimate of the size of the drops.

Building on the work of Fernández de la Mora and coworkers, Gañán-Calvo, Dávila
& Barrero (1994a, 1997) focus on the flow in the jet and assume that the surface
charge is in equilibrium, in the sense that the electric displacement in the liquid is
small compared with the electric displacement in the gas. These authors propose that,
for liquids with high conductivity and viscosity, the electric current and the size of the
drops should scale with the current and the radius of the jet in a region whose length
they estimate from their conservation equations specialized for one-dimensional flow.
They also propose alternative scaling laws for liquids with low conductivity and
viscosity. Somewhat different laws are derived by Gañán-Calvo (1997) on the basis
of a consistent calculation of the asymptotic structure of the jet far downstream of
the cone and an analytic solution for the shape of the upstream cone modified by the
presence of the electric charge of the jet.

Although differing in other important aspects, which include basic elements of their
theoretical models and their predictions of the drop size, Fernández de la Mora &
Loscertales (1994), Gañán-Calvo et al. (1994a, 1997) and Gañán-Calvo (1997) agree
that the electric current increases as the square root of the flow rate, at least in some
ranges of operation of the electrospray. An experimental investigation comparing
the predictions of the first two works was carried out by Chen & Pui (1997). More
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recently, Gamero-Castaño & Hruby (2002) have used time-of-flight and stopping-
potential techniques to elucidate a number of characteristics of electrosprays of
tributyl phosphate solutions, such as the velocity and electric potential of the liquid
at the breakup point of the jet, and some properties of the breakup process and of
the drops. These authors find that, within the existing uncertainties, their measured
radius of the jet at breakup may fit the predictions of Fernández de la Mora &
Loscertales (1994) as well as those of Gañán-Calvo (1997), and thus they cannot be
used to decide between the two competing theories, though the agreement is slightly
better with the latter than with the former.

The structure of the cone–jet has been analysed by Cherney (1999a, b) in the
asymptotic limit of small flow rates. This author concludes that the square-root
relation between the current and the flow rate should hold in this limit also.
Another result of his analysis is that the transition region where the meniscus departs
significantly from a Taylor cone coincides with the relaxation region of Fernández
de la Mora & Loscertales (1994), and that the creeping flow of the liquid in this
region is the superposition of a recirculating flow induced by the electric shear at the
surface, which is no longer an equipotential, and the sink flow used in the estimates
of Fernández de la Mora & Loscertales. A formal inconsistency of the analysis is that
a certain capillary number which should tend to zero as the cubic root of the flow
rate is assumed to be of order unity. When this is fixed, only the pressure variations
and viscous stresses of the recirculating flow contribute to deform the surface in
the transition region of Cherney’s analysis. But the recirculating flow alone cannot
generate a jet and, in addition, being stronger than the sink flow in Fernández de la
Mora & Loscertales (1994), it would make the residence time small compared with
the electric relaxation time long before reaching the transition region.

This paper is devoted to an analysis of the cone-to-jet transition region in
the stationary cone–jet regime of electrospraying. In electrospraying experiments,
the meniscus is typically held at the end of a metallic capillary which is fed with the
desired flow rate and set at a high voltage relative to a ground collecting electrode
at some distance from the meniscus. In many cases, the radius of the electrically
charged jet issuing from the transition region around the tip of the meniscus is small
compared with the radius of the capillary and the length of the jet (from inception
to breakup). This condition allows an idealized problem to be posited in which the
transition region is small compared with any other length of the system, be this the
radius of the capillary, the distance to jet breakup, or the interelectrode distance. All
such lengths become irrelevant to the local problem. The voltage applied between
the electrodes is the ultimate cause of the electric field seen by the transition region,
but this field is modified by the charge of the spray in the space between the jet and
the far electrode and, to a lesser extent, by the adjustment of the meniscus between
the rim of the capillary and the transition region. In addition, the field is intensified
locally by the very existence of the conical meniscus. All these effects make the electric
field around the transition region largely independent of the details of any particular
experimental configuration. In fact, it will be seen in § 2 that the electric field in an
intermediate region large compared with the transition region but still small compared
with any other length coincides in first approximation with the electric field of the
Taylor (1964) solution.

A non-dimensional problem for the transition region is formulated in § 2, whose
solution depends on three non-dimensional parameters, two of which are properties
of the liquid while the third is the non-dimensional flow rate injected through the
meniscus. The numerical solution of this problem for different values of the three
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parameters is presented in § 3, followed by a qualitative description of the asymptotic
structure of the solution for large values of the non-dimensional flow rate. This
analysis gives an electric current increasing as the square root of the flow rate and
asymptotically independent of the dielectric constant of the liquid, both when the
inertia of the liquid has importance and when it is negligible, though a number of
different double limits can be distinguished in the second case if the flow rate and the
dielectric constant are both large. The case of small non-dimensional flow rates and
the existence of a minimum flow rate below which a stationary cone–jet cannot be
established are discussed briefly.

2. Formulation
Consider first the Taylor (1964) cone. The surface of an electrically conducting

liquid in equilibrium is an equipotential of the electric field, and this field induces a
surface electric charge that screens the liquid from the electric field in the gas. The
hydrostatic balance of surface tension and normal electric stress at the conical surface
of the liquid is γ /R tan α = 1

2
ε0E

2
n , where γ is the surface tension of the liquid, α and

R are the semiangle of the cone and the distance from its apex, ε0 is the permittivity
of vacuum, and En is the electric field in the gas, which is normal to the surface.
This balance requires En = (2γ /ε0R tan α)1/2, and the density of free surface charge
in equilibrium is σ = ε0En. Writing E = ∇ϕ in the gas, where ϕ, the negative of the
electric potential, is a harmonic function regular outside the cone, such a surface field
amounts to ϕ = AR1/2P1/2(cos θ). Here P1/2 is Legendre’s function of degree 1/2, θ is
the angle around the apex measured from the prolongation of the axis of the cone,
which is the surface θ = π − α, and

A =

(
2γ

ε0P
′2
1/2(−cos α) sin2 α tan α

)1/2

.

In addition, the condition that the cone should be an equipotential of the electric
field (ϕ(R, π − α) = 0) requires that cos(π − α) be the first zero of P1/2, i.e. that
α ≈ 49.29◦. The hydrostatic balance in Taylor’s solution thus determines the angle of
the cone and the strength of the electric field around the cone, measured by A. This
means that, for a given configuration of the electrodes creating the electric field and a
given pressure at the inlet of the capillary holding the meniscus (or a given volume of
liquid), the solution will be realized only for a particular value of the voltage applied
between the electrodes. Such a voltage has been computed by Pantano, Gañán-Calvo
& Barrero (1994) for a needle–plate geometry. Equilibrium solutions with smooth
surfaces that tend to a cone only far from its apparent apex, or no equilibrium
solution at all, should be expected for other values of the voltage.

If liquid is injected through the capillary, then, in a certain range of voltages
and flow rates corresponding to the so-called cone–jet regime, the liquid leaves the
meniscus as a jet that emanates from an axisymmetric cone-to-jet transition region
around the apex of the cone, as in the sketch of figure 1. The jet may extend a large
distance downstream of the transition region before it breaks up into charged drops.
An electric current accompanies this flow, both because the free electric charge at the
surface is convected by the flow and because an electric field and its associated ohmic
conduction current appear in the liquid. There is no net charge in the bulk of the
liquid and the mobility of the surface charge will be neglected. The bulk conduction
current dominates in the meniscus far upstream of the transition region, where the
speed of the liquid and the surface charge density are small and the cross-section of
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σ = ε0En – ε0βEn
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Figure 1. Definition sketch.

the meniscus is large. The surface convection current begins to become important
when these conditions change in the transition region and beyond, and eventually
it dominates over the conduction current and is the only transport mechanism left
when the jet breaks into drops. The conservation equation for the free surface charge
is

dIs

dx
= 2πrsKEi

n

(
1 + r ′2

s

)1/2
with Is = 2πrsvsσ, (2.1)

where x is the distance along the symmetry axis, rs(x) and vs(x) are the radius of the
surface cross-section and the velocity of the liquid at the surface, K is the electrical
conductivity of the liquid, and Ei

n is the component of the electric field normal to the
surface at the liquid side. The surface charge density σ is given by

σ = ε0

(
En − βEi

n

)
(2.2)

in terms of the normal components of the electric field at the gas and liquid sides of the
surface and the dielectric constant of the liquid β (Landau & Lifshitz 1960). Hereafter
the superscript i denotes the electric field and the negative of the electric potential
in the liquid (Ei = ∇ϕi), while no superscript is used to denote these magnitudes in
the gas. The right-hand side of (2.1) is the conduction-to-convection charge transfer
rate, due to the component of the conduction current density ( j b = K Ei) normal to
the surface. Since the charge conservation equation in the bulk of the liquid reduces
to ∇ · j b = 0 in the absence of bulk charge, equation (2.1) establishes that the sum of
the convection and conduction currents across a section of the meniscus, Is(x) and
Ib(x) = 2πK

∫ rs

0
Ei

xr dr , respectively, where r is the distance to the symmetry axis, is
a constant, equal to the total current I transported by the liquid. Notice also that
∇ · j b = 0 becomes ∇2ϕi = 0 for a constant-conductivity liquid, in which case the
electric potentials are harmonic functions in both phases.

The components of the electric stress normal and tangent to the surface, τ e
n and τ e

t

respectively, are written here for reference (Landau & Lifshitz 1960):

τ e
n = 1

2
ε0

(
E2

n − βEi2

n

)
+ 1

2
ε0(β − 1)E2

t , τ e
t = σEt, (2.3)
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where Et is the component of the electric field tangent to the surface, which is
continuous across the surface. See figure 1.

Scales for the variables in the cone-to-jet transition region, the analysis of which
is the subject of this paper, can be worked out as follows. The transition region
is small compared with the meniscus in the conditions envisaged here. Let Q0 be
a characteristic flow rate, to be determined below. The scales of the size of the
transition region, R0 say, and the velocity of the liquid in it, v0 = Q0/R

2
0 , come from

the condition that the pressure variation due to the motion of the liquid should be
of the same order as the surface tension force in order for the surface to depart
from a Taylor cone. Assuming that the inertia of the liquid is important, so that
	 p = O(ρv2

0), this order-of-magnitude balance (ρv2
0 = γ /R0) gives R0 = (ρQ2

0/γ )1/3,
which is the inertial scale of Fernández de la Mora et al. (1990). The condition that
the electric stress at the surface should also be included then gives the scale of the
electric field E0 = (γ /ε0R0)

1/2, and the scales of the electric potential and the charge
density are ϕ0 = E0R0 and σ0 = ε0E0. In the same manner, the scales of the surface
and bulk currents that follow from their definitions with numerical factors omitted are
R0v0σ0 and KE0R

2
0 , respectively. But these two variables should be of the same order

if the bulk current becomes surface current in the transition region with I = Is + Ib

constant. The condition R0v0σ0 = KE0R
2
0 determines Q0 = ε0γ /ρK and thus all the

other scales. Summarizing,

Q0 =
ε0γ

ρK
, R0 =

(
ε2
0γ

ρK2

)1/3

, v0 =

(
γK

ρε0

)1/3

,

E0 =

(
ρ1/2γK

ε
5/2
0

)1/3

, I0 =
ε

1/2
0 γ

ρ1/2
, ϕ0 = E0R0, σ0 = ε0E0,


(2.4)

where I0 is the common value of the two electric current scales. Scales (2.4) were first
introduced by Gañán-Calvo et al. (1994a, 1997) using dimensional analysis.

As an example, the values of R0 for the highest conductivity solution of 1-octanol
and the lowest conductivity solution of water in the experiments of Fernández de
la Mora & Loscertales (1994) are 1.67 × 10−8 m and 1.07 × 10−7 m, respectively,
and the values of Q0 are 1.22 × 10−14 m3 s−1 and 2.99 × 10−13 m3 s−1 for these two
solutions. The small values of R0 are typical of many experiments, which justifies
the assumption of a transition region small compared with any other length of the
system. More precise estimates can be obtained by noticing that the actual size of
the transition region scaled with R0 increases proportionally to the 2/3 power of the
flow rate scaled with Q0 (from the pressure–surface tension balance in the preceding
paragraph with Q0 replaced by a generic flow rate; see also § 3.2 below). According
to this estimate, flow rates of order Q0(Dc/R0)

3/2 would be needed for the size of the
transition region to become of the order of the diameter of the capillary Dc. With Dc

in the order of 1 mm, these flow rates are over a million times Q0, much larger than
the flow rates typical of the cone–jet regime.

The last condition above, giving Q0 and closing the sequence, deserves some
comments. Equation (2.1) states that the bulk-to-surface current transfer causes the
variation of Is with x. Since dIs/dx = O(v0ε0E0) in the transition region (using
σ0 = ε0E0 and the fact that both x and rs scale as R0 in the non-slender transition
region), the balance of the two terms of (2.1) implies

Ei
n = O

(
ε0E0v0

K R0

)
= O

(
E0

β

te

tr

)
,
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where tr = R0/v0 is the residence time of the liquid in the transition region and
te = ε0β/K (a property of the liquid only) is the electric relaxation time brought
about by the charge transfer process. If tr � te, then charge transfer is able to balance
the variations of surface charge with only a small electric field Ei

n � E0/β in the
liquid, or, in other words, the surface charge is screening the liquid from the electric
field in the gas, as in the absence of motion. On the contrary, if tr � te, then Ei

n � E0/β

would be required, which is not available because there is no mechanism that could
create an electric displacement ε0βEi in the liquid large compared with the electric
displacement ε0E in the gas (see (2.2), where Ei

n = En/β at most, when σ = 0). Thus
the right-hand side of (2.1) is negligible in this case, and the surface current should be
nearly independent of x. This is a difficult condition to impose because σ , rs and vs

are already constrained by (2.2) and the other conservation equations (see below). In
fact the condition tr � te is never realized experimentally (Gañán-Calvo et al. 1997);
the cone–jet regime ends before the residence time tr becomes small compared with
the electric relaxation time, giving way to other non-stationary regimes (see Cloupeau
& Prunet-Foch 1994 and Jaworek & Krupa 1999 for classifications of the possible
regimes). Up to a factor of β , the condition tr = te is equivalent to the condition used
before to determine Q0. Fernández de la Mora & Loscertales (1994) propose that the
condition tr = te should be always satisfied, irrespective of the flow rate, in a certain
relaxation region that has been described in the introduction. They use this condition
to determine the order of the electric current as a function of the flow rate. On the
other hand, Gañán-Calvo et al. (1994a) argue that, since the residence time increases
with the flow rate (tr = R/v = ρQ/γ using the inertial scales in the paragraph
above (2.4) for a generic flow rate), Q0 should be characterizing the minimum flow
rate compatible with the cone–jet regime, and tr � te everywhere for higher flow rates.

There is yet another feature of the scales (2.4) that is worth noticing. The electric
shear on the surface is σEt (see (2.3)), where the component of the electric field
tangent to the surface is of the order of E0 in the transition region when tr = te, again
up to a factor of β . Provided that the Reynolds number defined in (2.8) below is of
order unity, which is the case for many liquids, this electric shear is of order µv0/R0,
where µ is the viscosity of the liquid, and thus plays an important role in pulling the
liquid in the transition region out of the meniscus (Smith 1986; Hayati et al. 1987a).

The scales (2.4) are used in what follows to non-dimensionalize the problem,
denoting the non-dimensional variables with the same symbols used before for their
dimensional counterparts. Neglecting the pressure variations and viscous stresses of
the gas on the surface of the liquid, the non-dimensional governing equations and
boundary conditions at the surface are

∇ · v = 0, v · ∇v = −∇p +
1

Re
∇2v, ∇2ϕi = 0 for r < rs(x), (2.5a−c)

∇2ϕ = 0 for r > rs(x) (2.6)

and

r = rs :


∇ · n = p − n · τ ′ · n + 1

2

(
E2

n − βEi2

n

)
+ 1

2
(β − 1)E2

t , (2.7a)

t · τ ′ · n = σEt, (2.7b)
d

dx
(rsvsσ ) = rsE

i
n

(
1 + r ′2

s

)1/2
, (2.7c)

σ = En − βEi
n, v · n = 0, E · t = Ei · t, (2.7d–f)
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where (x, r) are cylindrical coordinates; n = (−r ′
s, 1)/(1 + r ′2

s )1/2 and t = (1, r ′
s)/

(1 + r ′2
s )1/2, with r ′

s = drs/dx, are unit normal and tangent vectors at the surface;
En = E · n and Et = E · t , and similarly for the electric field in the liquid; vs = v · t ,
where v is the velocity of the liquid, and τ ′ = (2Re)−1[∇v + (∇v)

T

] is the viscous
stress tensor. Equations (2.7a) and (2.7b) are the balances of stresses normal and
tangent to the surface, where p is the excess of pressure of the liquid above the
gas pressure, non-dimensionalized with ρv2

0 , and the electric stresses (2.3) have been
rewritten in non-dimensional variables. The non-dimensional parameters appearing
in these equations are

β and Re =
ρ1/3ε

1/3
0 γ 2/3

µK1/3
, (2.8)

which are both properties of the liquid. The second parameter is Re = ρv0R0/µ

and thus measures the relative importance of inertia to viscous forces when the
non-dimensional variables are of order unity.

Far-field boundary conditions are needed to complete the formulation of the
problem. Assuming that a conical spray of charged drops issues from the apex of
the conical meniscus, Fernández de la Mora (1992) demonstrated that the field of
the space charge carried by the drops of the spray depends of the distance to the
apex with the same R−1/2 law as the field of the surface charge of a Taylor cone, and
that the combination of the two fields leads to conical menisci with angles different
from the Taylor angle α. In the situation envisaged here, however, the breakup of the
jet into drops and the dispersion of the drops into a spray are processes that occur
only very far downstream of the transition region, so that the results of Fernández
de la Mora (1992) would be applicable even further if at all. Far-field boundary
conditions for the problem in the transition region should come from the analysis
of an intermediate region around the transition region, of size large compared with
R0 (R = |x| � 1 in non-dimensional variables) but still small compared to the total
length of the jet. The only electric charge present in this region is on the surfaces of
the meniscus and the jet; the space charge in the far spray has only a global screening
effect equivalent to that of changing the voltage applied between the electrodes to an
effective value smaller than the real voltage. Consider the meniscus in this intermediate
region. Assuming that the surface will tend to a cone far upstream of the transition
region, the electric field in the liquid should decay as I/R2 to keep a constant electric
current I , and the velocity also decays sufficiently rapidly (actually as R−3/2 due to
the electric shear on the surface; see Barrero et al. 1999 and below) for the normal
stress of the liquid on the surface to become small compared with the normal stress
due to the surface tension when R → ∞. Thus we are left in this far region with
the surface tension–normal electric stress balance characteristic of Taylor’s solution,
which requires En = O(R−1/2). This electric field is large compared with the O(I/R2)
field in the liquid, so that the surface is effectively an equipotential (Et � En) despite
the presence of an electric current in the liquid. Moreover, the electric field induced
by the charge at the surface of the jet far downstream of the transition region decays
faster than R−1/2 away from the jet, as will be seen in the next two paragraphs
(but see also § 3.3), and thus the leading-order solution for the gas-phase electric
potential when R → ∞ coincides with Taylor’s solution ϕ

T
= AR1/2P1/2(cos θ), with

A = [2/P ′2
1/2(−cos α) sin2 α tan α]1/2 = 1.3459 . . . in non-dimensional variables. The

angle of the meniscus tends to the Taylor angle α.
The flow and charge distribution in the jet far downstream of the transition region

can now be estimated following the original analysis of Gañán-Calvo (1997). The
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following order-of-magnitude relations between the characteristic values of the non-
dimensional variables hold in the jet for x → ∞:

vr2
s ∼ Q, σvrs ∼ I,

v2r2
s

x
∼ σEtrs, Et ∼ 1

x1/2
. (2.9)

The first two balances express the conservation of mass (Q is the flow rate non-
dimensionalized with Q0) and electric current, which is mainly surface current in the
jet. The third balance comes from the axial component of the momentum equation
(2.5b) integrated across the jet which, upon using (2.7b) and neglecting viscous stresses
associated with the x-derivatives of the velocity, is d[πr2

s (v
2 + p)]/dx = 2πrsσEt in

the far jet. Finally, the fourth condition (2.9) expresses that the field tangent to the
surface is dominated by the contribution of the cone, as mentioned before. These four
relations yield (Gañán-Calvo 1997)

rs = O

(
Q3/4/I 1/4

x1/8

)
, v = O

(
I 1/2

Q1/2
x1/4

)
, σ = O

(
I 3/4/Q1/4

x1/8

)
(2.10)

for x → ∞. The electric field normal to the surface of the jet is En = σ � Et from
(2.7d). Unlike Et , the normal field is due to the local charge in the jet. The contribution
of the normal electric stress to (2.7a), of the order of E2

n , is negligible compared with
the contribution of the surface tension, of order 1/rs . The surface tension is balanced
by a pressure variation of order 1/rs , which, however, is small compared with the
dynamic pressure of the liquid. This means that the acceleration of the jet under the
action of the surface electric shear occurs effectively at constant pressure.

The field induced by the charge of the jet far downstream of the cone can be
estimated by noticing that, from the point of view of the gas, the charged jet acts
as a line distribution of charge of strength Φ = O(σrs). The axial component of the
field of this distribution is (2π)−1 ln(r/x) dΦ/dx = O(Q1/2I 1/2/R5/4) at leading order
for x = O(R) � 1, up to logarithms, and this is also the order of the whole field
induced by the far jet at distances of O(R) from its surface (Ashley & Landahl 1965).
This is a small field compared with the O(R−1/2) field of Taylor’s solution, and
leads to a small perturbation ϕ1 = O(Q1/2I 1/2/R1/4) to the electric potential in the
gas for R → ∞. The condition that ϕ

T
+ ϕ1 = 0 at the surface of the meniscus,

θ = π − α − δ(R) say, determines the small departure of the surface from a Taylor
cone: δ(R) = O(Q1/2I 1/2/R3/4).

The far-field boundary conditions for (2.5) and (2.6) can be summarized as follows:

ϕ = ϕ
T
(R, θ) + O

(
Q1/2I 1/2

R1/4

)
(2.11)

in the gas, and

ϕi =
I

2π(1 − cos α)R
,

ψ = −
AP ′

1/2(−cos α)

2π(1 − cos α)
IReR1/2f

B
(−cos θ) +

Q

2π(1 − cos α)
(1 + cos θ),

ω → 0


(2.12)

in the meniscus, where ψ and ω are the stream function and the vorticity. The first
term of ψ accounts for the recirculating flow induced by the electric shear on the
meniscus (Barrero et al. 1999) and the second term accounts for the flow rate Q

injected through the capillary. The function f
B
(ξ ), introduced by Barrero et al. (1999),
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is the solution of

(1 − ξ 2)
(
f iv

B
− 4ξf ′′′

B
+ 3

2
f ′′

B

)
− 15

16
f

B
= 0,

f
B
(1) = f

B
(cosα) = f ′′

B
(cos α) + 1 = 0, f ′

B
(1) < ∞.

In addition, ∂ϕi/∂x = ∂ϕ
T
/∂x in the jet, where the other variables follow the power

laws (2.10). Finally, the shift invariance of the whole problem is fixed by setting
rs = −x tan α + o(1) for x → −∞, which amounts to fixing the origin of the axial
distance x.

This completes the formulation of the problem. The solution of (2.5)–(2.7) and
(2.10)–(2.12) should determine the electric current I , the velocity and pressure in the
liquid, the electric potential in both phases, and the radius and charge density of
the surface for given values of β , Re and the non-dimensional flow rate Q. The fact
that the solution depends on three non-dimensional parameters, equivalent to β , Re

and Q here, was first noted by Fernández de la Mora & Loscertales (1994), who
investigated experimentally the dependence of the current and the size of the drops
on these parameters; see also Rosell-Llompart & Fernández de la Mora (1994).

In essence, the electric shear acting on the surface of the liquid can speed up any
flow rate injected through the capillary, while the electric current is determined by
the condition that only surface convection current should be left far downstream.
In principle, the electric current could be assigned an arbitrary value if this latter
condition were relaxed and some conduction current were allowed in the far jet, as
when the jet impinges onto the far electrode. Then (2.10) would need change.

For the numerical treatment, cylindrical coordinates (x, r) and the equivalent
vorticity–stream function form of (2.5a, b) were used, and r was replaced by η =
r/rs(x), so that the liquid occupies the region η < 1 and the gas occupies the region
η > 1. The equations were discretized using finite differences and solved by means of
a standard pseudotransient iteration that amounts to adding artificial time derivatives
to the discretized equations and letting the pseudotransient solution evolve until a
stationary state is attained.

Condition (2.11), that the electric potential in the gas far from the transition region
coincides with the Taylor potential at leading order, poses a strong restriction on
the voltage applied between the electrodes. Leaving aside the effects of the space
charge and the adjustment of the meniscus between the rim of the capillary and the
transition region, (2.11) would imply that the relative variation of the voltage about
the value leading to a hydrostatic Taylor cone is only of order Q1/2I 1/2/L3/4, where
L � 1 is the interelectrode distance scaled with R0. This range should widen when the
two effects mentioned above are taken into account, but it will still be fairly narrow
for any realistic configuration of the electrodes. The result seems to be in line with
experimental observations (Jones & Thong 1971; Cloupeau & Prunet-Foch 1989;
Tang & Gomez 1994; Chen et al. 1995).

3. Results and discussion
3.1. Numerical results

Some streamlines of the flow in the liquid are displayed in figure 2 for β = 5, Re = 1
and the two values of the non-dimensional flow rate Q = 0.27 and 4.8 (for which the
non-dimensional electric current is I = 1.1 and 5.0, respectively). Notice the different
scales of the two figures; the size of the cone-to-jet transition region increases with
Q. As can be seen, recirculation exists in the transition region in figure 2(a), for the
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Figure 2. Streamlines (thick) and equipotentials of the electric field (thin) for β = 5, Re = 1
and two different flow rates: (a) Q = 0.27 (I = 1.1) and (b) Q = 4.8 (I = 5.0). The outermost
streamline of each figure coincides with the surface of the liquid.
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Figure 3. Surface convection current (solid) and bulk conduction current (dashed). (a) (β ,
Re) = (5, 1) and Q = 0.22, 3.73 and 13.27 (for which I = 0.99, 4.32 and 8.89), increasing from
bottom to top. (b) (β , Re) = (50, 1) and Q = 0.49, 3.81 and 9.14 (for which I = 0.70, 2.25
and 3.87).

smallest of the two flow rates, but not in figure 2(b). The recirculation region becomes
more prominent when Q decreases, covering most of the cone and extending into the
beginning of the jet for the smallest flow rates for which a numerical solution could
be computed. When Q increases, the recirculation region recedes into the cone. This
is in line with the asymptotic form of the stream function in (2.12), where, assuming
that the ratio Q/I increases with Q, the first term, which represents the recirculating
flow induced by the electric shear at the surface, dominates the second term, which
is the sink due to the injected flow rate, only when R is large compared with (Q/I )2.
Experimental observations of recirculation in the cone were first reported by Hayati
et al. (1986, 1987a). The swirling flow that sometimes accompanies the meridional
motion of the liquid has been analysed by Shtern & Barrero (1994, 1995a, b) and
Fernández-Feria et al. (1999). The thin curves in figure 2 are equipotentials of the
electric field in both phases. The liquid surface tends to an equipotential far upstream,
where Taylor’s solution applies, but not in the jet, where the electric shear continuously
accelerates the flow.

The bulk conduction and surface convection currents are given in figure 3 as
functions of the streamwise distance x for Re = 1 and different values of β and Q.
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Figure 4. Surface charge density. (a) (β , Re) = (5, 1) and Q = 0.99, 2.19, 3.51 and 11.48 (for
which I = 2.17, 3.34, 4.19 and 8.11), increasing as indicated by the arrow. (b) (β , Re) = (50, 1)
and Q = 0.56, 2.07, 3.69 and 6.09 (for which I = 0.74, 1.56, 2.23 and 3.02).

The surface current (solid) increases and the bulk current (dashed) decreases with
increasing x. The sum of the two currents is the total electric current, which is
independent of x and increases with Q. The crossover point at which the surface
and bulk currents become equal to each other shifts downstream into the jet with
increasing Q, so that the electric current is dominated by bulk conduction in most of
the transition region when the non-dimensional flow rate is large. The idea that the
surface current becomes important only in the jet was put forward by Gañán-Calvo
et al. (1994a, 1997) and has been used by these authors in subsequent analyses of the
jet based on one-dimensional models that take advantage of the slenderness of this
region (see, e.g., Gañán-Calvo 1999 and references therein).

Figure 4 shows the surface charge density, σ (x), for Re = 1 and different values
of the flow rate in relatively apolar (β = 5) and polar (β = 50) liquids. The charge
density varies as 1/|x|1/2 in the cone upstream of the transition region. For β = 5, it
reaches a maximum in the transition region, where the singularity of Taylor’s solution
is smoothed out, and decreases in the jet. The maximum charge density decreases
with increasing Q because the size of the transition region increases. The position of
the maximum shifts downstream into the jet with increasing Q, so that the charge
density increases with distance in the leading part of the jet. A characteristic feature
of the charge density in figure 4(b), for β = 50, is the fall and rise in the transition
region, specially for small values of the flow rate. This local dip is absent from the
solutions with β = 5. It reflects that the electric relaxation time increases with β and
the bulk-to-surface charge transfer cannot cope with the fast variation of the surface
charge that would be required in the transition region to screen the liquid from
the field in the gas. In fact (cf. the discussion following (2.4)), the maximum possible
value of the component of the electric field normal to the surface on the liquid
side is Ei

n = En/β , from (2.7d) with σ = 0, which can only give σ/En = O(tr/β)
in the transition region (from the balance of the two terms of (2.7c)). Thus the
charge density cannot satisfy the screening condition σ ≈ En when β increases or the
non-dimensional residence time tr decreases.

Further downstream, the curves of figure 4 for different values of the flow rate begin
to coalesce, which makes the charge density nearly independent of the flow rate in the



Flow rate and electric current emitted by a Taylor cone 315

10

1

0.1
0.1 101

QQ

100 20

β = 50
Re = 10

β = 150
Re = 1

β = 50
Re = 1

β = 5
Re = 1

β = 5
Re = 1

β = 50
Re = 1

8

4

I

(a) (b)

Figure 5. Electric current as a function of the flow rate for different values of β and Re. The
dashed curve is I = 2.55 Q1/2, from the correlation of experimental data in Gañán-Calvo (1999).
The dotted line at the left has slope 1/4. (b) Logarithmic representation of (a).

region where bulk conduction current becomes surface convection current (around
the crossover of figure 3). This feature and a similar coalescence of the curves giving
the velocity along the axis of the jet (not displayed) agree with the results obtained
by Gañán-Calvo (1999) using a hybrid experimental–numerical technique. Also in
agreement with these results is the plateau of the charge density in figure 4(b), for
β = 50, in which case it has been possible to extend the computations to values of x

somewhat larger than for β = 5. The charge density should tend to the downstream
asymptotic regime (2.10) even further downstream, where the continuous acceleration
of the liquid stretches the surface of the jet and leads to a slow decrease of the charge
density with streamwise distance. This final regime is clearly not attained within the
computational domain used for β = 5, and in any case the asymptotic variation of σ

as x−1/8 is probably too slow to be ascertained computationally or experimentally.
The electric current is plotted in figure 5 as a function of the flow rate for different

values of β and Re. In all the cases the current increases approximately as the
square root of the flow rate in the upper part of the range of the latter variable that
has been explored numerically. This is in line with existing experimental results and
with scaling laws derived from different theoretical models (Fernández de la Mora
& Loscertales 1994; Gañán-Calvo et al. 1997; Gañán-Calvo 1997). The logarithmic
representation in figure 5(b) suggests that the square root is an asymptotic law for
high non-dimensional flow rates in the two cases for which the computations have
been extended to large values of this variable; namely (β , Re) = (5, 1) and (β , Re) =
(50, 1). (See also the results of § 3.5, which cover a larger range of flow rates.) The
dependence of the ratio I/Q1/2 on the dielectric constant β for large values of Q is
also of interest. The issue has not been settled yet. Results in the literature include
I/Q1/2 = f (β)/β1/2 with f (β) first increasing with β , reaching a plateau and then
decreasing slightly (Fernández de la Mora & Loscertales 1994); f (β) ∝ β1/4 (Gañán-
Calvo et al. 1994a, 1997); f (β) increasing monotonically, first faster than β1/4 and
then slower than β1/4 (Chen & Pui 1997); and I/Q1/2 independent of β (Gañán-
Calvo 1997, 1999). This latter result seems at variance with the numerical results in
figure 5(a) and with existing experimental data for the largest flow rates attainable
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in the cone–jet mode. The order-of-magnitude estimates in the following subsection
suggest, however, that I/Q1/2 asymptotically independent of β could be inescapable
for very large values of Q, though this asymptotic result, which requires Q � β when
β is large, may not be easily attained in some practical cases.

3.2. Estimations for large flow rates

A qualitative description of the transition region in the asymptotic limit Q → ∞ is
proposed in this subsection. The asymptotic structure consists of the transition region
proper, which is a non-slender region of effectively inviscid flow where transport of
electric current is still dominated by bulk conduction and the liquid surface is nearly
an equipotential, followed by a number of slender regions, already in the jet, where
surface convection current, viscous forces, and electric shear at the surface come into
play, until the flow adjusts to the downstream asymptotic state (2.10).

The size of the non-slender transition region is determined, as in § 2, by the condition
that the dynamic pressure of the liquid, whose velocity is of order vc = Q/R2

c , should
be of the order of the normal stress at the surface due to the surface tension, of order
1/Rc in non-dimensional variables. This condition gives Rc = Q2/3 and vc = 1/Q1/3

for the characteristic non-dimensional size and velocity of the transition region, while
the characteristic electric field in the gas is Ec = 1/Q1/3, from the condition that the
electric stress should also play a role in the balance of normal stresses (2.7a).

The flow in the transition region is affected little by viscous forces because

O (v · ∇v)

O
(
Re−1 ∇2v

) = Re vcRc = Re Q1/3 � 1

in the momentum equation (2.5b). This means that the flow is not driven by the local
electric shear at the surface, which is felt only in a thin surface viscous layer, but by
the depression created by the action of the electric shear in the jet far downstream of
the transition region. The flow in the transition region is irrotational.

The non-dimensional residence time in the transition region is tr =Rc/vc = Q, which
is large compared with the non-dimensional electric relaxation time te = β if Q � β ,
in which case the surface charge screens the liquid from the electric field in the gas
and σ ≈ En from (2.7d). This result and the estimate of En above explain the decrease
of the maximum surface charge density in figure 4 with increasing Q.

The surface convection current is Is = 2πrsvsσ =O(1), independent of Q, while the
numerical results show that the total electric current increases with Q. Therefore
the electric current in the transition region is dominated by conduction in the bulk
of the liquid. On the other hand, the maximum possible conduction current is of the
order of EcR

2
c = Q, if the electric field in the liquid were of the order of Ec. This

estimate is very much larger than the observed current, which means that the electric
field in the liquid is small compared with Ec and the liquid surface is nearly an
equipotential from the point of view of the gas phase.

Rescaling the variables with the characteristic values derived from the foregoing
estimates and then letting Q → ∞, we are led to the following problem, where tildes
denote rescaled variables:

ṽ = ∇φ̃ with ∇2φ̃ = 0 in the liquid (r̃ < r̃s(x̃)), (3.1a)

∇2ϕ̃ = 0 in the gas (r̃ > r̃s(x̃)), (3.1b)

∇ · n = − 1
2
|∇φ̃|2 + 1

2
|∇ϕ̃|2 and n · ∇φ̃ = ϕ̃ = 0 at r̃ = r̃s(x̃), (3.1c)
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φ̃ =
1

2π(1 − cos α)R̃
for x̃ → −∞, (3.1d)

ϕ̃ = ϕ̃
T
(R̃, θ) for R̃ → ∞. (3.1e)

Here φ̃ is the velocity potential rescaled with vcRc and ϕ̃
T

is the electric potential
of the Taylor solution in rescaled variables. The electric potential in the liquid
rescaled with I/Rc (where the electric current is still unknown) coincides with the

velocity potential φ̃ because both variables satisfy the same equation and boundary
conditions, including the condition n · ∇ϕ̃i = 0 at the surface, which expresses that the
bulk-to-surface current transfer rate is negligible in the present region.

When x̃ → ∞ (or x � Q2/3), the surface is observed to become a jet with radius
decreasing continuously with downstream distance. In the absence of viscosity, the
decreasing radius is associated with an increasing, transversally uniform velocity
v =Q/πr2

s and an increasing depression p = − v2/2 = −Q2/2π2r4
s . This depression

becomes large compared with the normal stress due to the surface tension (≈ 1/rs)
when rs � Q2/3, and it is to be balanced by the outward electric stress, which requires
En = Q/πr2

s at the surface. (This balance is reminiscent of a model of Mestel 1994
for the flow in the meniscus.) On the other hand, the axial field induced at the jet
by the surface charge in the cone is Ex = ∂ϕ

T
/∂R|θ=0 = A/2x1/2 for x � Q2/3. Since

the surface of the jet should be an equipotential, this field is to be balanced by the
field of the charge distribution at the surface of the jet (where σ = En), which acts
as a charged streak leading to the axial field (ln ε) d(Enrs)/dx to leading order in an
expansion containing logarithms of ε = rs/x (Ashley & Landahl 1965). Thus, in this
approximation (i.e. leaving out other logarithmic terms),

rs =
Q/πÃ

x1/2
, v = En =

πÃ2

Q
x for x � Q2/3, (3.1f )

where Ã = A/(− ln ε). These results can be recast in tilde variables simply by setting
Q = 1.

The electric field required to keep a constant conduction current I in the ever

thinning liquid jet is Ei
x = I/πr2

s = πÃ2(I/Q2)x, which should exist when the surface

convection current Is =2πσrsv ≈ 2Ã3x3/2/Q is small compared with I . The condition
used above, that the surface of the jet is an equipotential from the point of view
of the gas, breaks down when Ei

x becomes of the order of A/2x1/2, which happens
when x is of the order of xt = Q4/3/I 2/3, up to logarithms. The electric field in the
liquid cannot continue increasing linearly with x when x = O(xt ) and beyond, so that
the conduction current can no longer be maintained and has to become a surface
convection current. An order of magnitude estimate of the total current can be
obtained from the condition that Is = O(I ) when x = O(xt ), which, with the estimate
of Is given above in this paragraph, yields I =O(Q1/2). The transfer of bulk current
to surface current occurs at non-dimensional distances of order xt = Q downstream
of the cone-to-jet transition region, where the non-dimensional radius of the jet is
rs = O(Q1/2), the non-dimensional velocity and surface charge density are of order
unity, and the non-dimensional axial field is of order Q−1/2. These results provide
a physical interpretation for the scales postulated by Gañán-Calvo (1997) (see also
the experimental results in Gañán-Calvo 1999). It is also in the region of x = O(Q)
where, if Re =O(1), viscous forces begin to affect the whole cross-section of the jet
and the electric shear at the surface begins to accelerate the flow. This is because
Re−1 ∇2v ≈ Re−1r−1∂(r∂v/∂r)/∂r is of the same order as v · ∇v (both are of order
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Q−1), and because σEt is of the same order as Re−1∂v/∂r (both are of order Q−1/2).
The effect of the surface tension is negligible in this region.

Further downstream, for x � Q, most of the electric current is due to convection
of surface charge; the axial electric field is dominated by the contribution of the
cone: Ex = A/2x1/2; and the electric shear continues to accelerate the liquid, whose
velocity is nearly uniform across the jet and whose pressure is nearly uniform (because
p = O[max(E2

n, 1/rs)] � v2, assuming the results below). In these conditions,

πr2
s v = Q, 2πrsvσ = I,

d

dx

(
πr2

s v
2
)

= 2πrsσEx, (3.2)

expressing the conservation of mass, charge and momentum in the jet. These equations
can be solved to yield

rs =
rs0

[1 + 8πA(I/Q3)r4
s0
x1/2]1/4

∼
(

Q3

8πAI

)1/4
1

x1/8
,

v =
q

πr2
s

∼
(

8A

π

I

Q

)1/2

x1/4, σ =
I rs

2Q
∼

(
I 3

128 πAQ

)1/4
1

x1/8
,

 (3.3)

where rs0
= O(Q1/2) is a constant.

Using these results, the surface tension can be seen to come back into play (1/rs =
O(E2

n) with En = σ ) when x = O(I 5/6Q1/4) = O(Q7/3). Even further downstream, the
normal electric stress becomes negligible and condition (2.7a) at the surface reduces
to the balance of surface tension and pressure. This, however, does not affect (3.3),
which coincide with the downstream asymptotics of Gañán-Calvo (1997) for any
x � Q.

3.3. Additional comments

The electric charge of the jet in the region Q2/3 � x � Q induces an electric field
at the meniscus which is only logarithmically small compared with the field of a
Taylor cone. The boundary conditions (3.1d–f ) are thus correct only to leading order
in an expansion in powers of 1/ ln Q and, since this is not a small parameter for
any realistic value of Q, the solution of problem (3.1) cannot provide an accurate
asymptotic description of the transition region. Equations (3.1) are best used as order
of magnitude balances, as has been done in the preceding section. A qualitative
estimate of the effect of the electric charge of the jet on the shape of the meniscus
for Q2/3 � (−x) � Q can be obtained in this vein by treating ε = rs/x as a small
constant. (Actually the results that follow can be derived without the condition that
ε be a constant. They are the leading term of a formal expansion in both powers
and logarithms of R, of the type introduced by Glauert & Lighthill (1955) for a
different problem. The next term of the expansion, however, is only logarithmically
smaller than the leading term. The reader is referred to the original paper for
details.) The electric potential satisfying the condition ϕ = 0 at the surface of the jet
is then ϕ = A0R

1/2[P1/2(cos θ) + Q1/2(cos θ)/ ln ε], where Q1/2 is Legendre’s function
of the second kind. Proceeding as in Fernández de la Mora (1992), the condition
ϕ =0 at the meniscus gives the new angle of the cone as α + δ(ε), with δ(ε) = −
[Q1/2(−cos α)/ sin α P ′

1/2(−cos α)]/ ln ε ≈ 1.3887/ ln ε < 0, while the equilibrium of
normal stresses far upstream gives A0 = A[1 + O(1/ ln ε)]. This result could explain
the reduction of the angle of the cone that is observed experimentally at high flow
rates. The meniscus becomes a Taylor cone only when the effect of the jet becomes
small, for x � Q, provided the influence of the finite sizes of the capillary and the
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jet is still negligible. The small parameter 1/ ln ε was anticipated and widely used by
Gañán-Calvo (1997).

The qualitative description of the asymptotic solution for Q → ∞ in § 3.2 is
apparently consistent and complete, and predicts an electric current proportional to
Q1/2 and independent of β . It is now appropriate to ascertain the range of β in
which this solution can be realized. Under the assumption of fast surface charge
relaxation that has been used, σ = En and the surface current is Is = 2πrsvsσ =
O(x3/2/Q) for Q2/3 �

∼ x �
∼ Q. The normal electric field at the liquid side of the surface

required to supply this current is, from (2.7c), Ei
n = r−1

s d(Is/2π)/dx = O(x/Q2), while
En = O(x/Q) in the gas. The surface charge will be screening the liquid when
βEi

n � En, which amounts to Q � β , a condition already found in the analysis of
the transition region. This condition imposes a high lower bound on the flow rate
for polar liquids (β large). If it is not satisfied, then the assumption of fast charge
relaxation fails simultaneously in the whole length between the transition region and
the bulk-to-surface current transfer region x = O(Q).

The numerical solutions of § 3.1 and the experimental results in the literature show
that the cone–jet regime extends to fairly small values of Q/β before giving way
to other, non-stationary regimes. It is of interest to investigate how these regimes
may come about when β � Q � 1. In these conditions, charge relaxation is still
possible far upstream in the cone, where the surface current is small compared with
the bulk current and conservation of mass and electric current require v = O(Q/R2)
and Ei

R
= O(I/R2). In this far region σ = En = −R−1∂ϕ

T
/∂θ =O(R−1/2), leading to

Is = O(Q/R3/2) and to Ei
n = O(Q/R7/2) (via (2.7c)). The condition βEi

n � En breaks
down when R is of order Re = (βQ)1/3, where Ei = O(β−7/6Q−1/6) and the bulk
and surface currents are both of order (Q/β)1/2, which is the order-of-magnitude
estimate proposed by Fernández de la Mora & Loscertales (1994). The residence time
becomes small compared with the electric relaxation time when R � Re. Then the
surface charge density cannot keep pace with the increasing normal field and becomes
negligible in (2.7d), which reduces to Ei

n ≈ En/β . The electric field in the liquid is as
large as it can possibly be here, but it is still small compared with the electric field
in the gas when β � 1, so that the surface of the liquid is still an equipotential from
the point of view of the gas. The normal electric stress is still ≈ E2

n/2 due to the
polarization charge, though the surface density of free charge is negligible. Under
these conditions, the flow in the meniscus for R � Re and down to the region of
R = O(Q2/3) may be as in the preceding section. Once the liquid reaches the slender
jet, however, the normal electric stress of order x2/Q2 that would be required to
prevent the collapse of the surface under the depression created by the stationary
motion of the liquid ceases to be available, because the electric field normal to the jet
is induced by the free surface charge, which is too small, not by the outer field (but
see § 3.5). This description suggests that a pulsating regime akin to the microdripping
regime (Cloupeau & Prunet-Foch 1990, 1994) could be established, with a stationary
conical meniscus followed by a transient region of size Q2/3 or smaller whose rounded
surface is periodically disrupted to shed blobs of liquid.

3.4. Estimations for small flow rates

A possible structure of the solution in the asymptotic limit Q → 0 with (β, Re) =
O(1) is discussed here for completeness. Such a solution, if it exists, is not realized
experimentally because the actual flow becomes time-dependent before the flow rate
can be decreased arbitrarily. However, the asymptotic estimates that follow could
still reveal some features of the real solution and perhaps provide insight into the
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cause of the transition to a non-stationary regime. A limitation of the model problem
of § 2 in the range of small values of Q may arise from the assumption of a
constant electrical conductivity. When the conductivity of the liquid is due to a strong
electrolyte, Fernández de la Mora & Loscertales (1994) showed that a sheath layer of
reduced ion concentration and conductivity appears around the surface and increases
in thickness when the ratio of the residence time to the electric relaxation time
decreases, which happens when Q decreases. It could be argued that ignoring this
layer may result in an artificially extended range of flow rates for which a solution
exists. In fact, some of the numerical solutions of § 3.1 are for values of Q smaller
than the experimental minimum. However, the sheath layer seems to be always thin,
and its real importance, as well as the cause of the minimum experimental flow rate,
are still to be ascertained.

Leaving this effect aside, the numerical results show that the electric current
approaches zero and the rear end of the recirculation bubble approaches the apex
of the cone when Q decreases. The upstream conditions (2.11) and (2.12) require
that: E = O(1/R1/2) in the gas, for the normal electric stress to balance surface
tension; Ei = O(I/R2) in the liquid, to keep a constant conduction current; and
v = O(IRe/R3/2) in the slow, viscosity-dominated flow in the Taylor cone, from the
viscous–electric shear balance Re−1v/R ∼ σEt (with σ ≈ En when E � Ei). More
detailed accounts of this flow have been given by Barrero et al. (1999) and Cherney
(1999a, b). To leading order, its stream function is given by the first term of ψ

in (2.12). The flow is forward, toward the apex, near the surface and backward
near the symmetry axis. It carries a surface current Is = O(σvR) = O(IRe/R) which
becomes of the order of the total current I for R = O(Re). At these distances from
the apex the pressure and viscous stress of the liquid on the surface are of order
Re−1v/R = O(I/Re5/2), too small to upset the surface tension–normal electric stress
balance when I � 1, and the electric field in the liquid is Ei = O(I/Re2), small
compared with the electric field in the gas. In these conditions, since most of the
electric current is transferred to the surface in the region of R = O(Re), the following
order-of-magnitude balances should hold for R � Re:

σvR ∼ I, E2
n ∼ 1

R
,

1

Re

v

R
∼ σEt, σ ≈ En, (3.4)

expressing the conservation of the electric current, the equilibrium of stresses normal
and tangent to the surface, and condition (2.7d) with βEi

n neglected, respectively.
These balances give

v = O

(
I

R1/2

)
, σ ≈ En = O

(
1

R1/2

)
, Et = O

(
I

ReR

)
. (3.5)

The residence time R/v = O(R3/2/I ) becomes of the order of the electric relaxation
time (of order unity when β = O(1)) for R = O(I 2/3), but this does not affect the
balances (3.4) because no current is being transferred to the surface. The estimates
(3.5) can be used for R � I 2/3. The pressure and viscous stress increase as I/ReR3/2

when R decreases. They become of the order of the surface tension and normal
electric stress (of O(1/R)) and begin to deform the surface when R = O(I 2/Re2),
which defines the characteristic size of the cone-to-jet transition region. In this region
v = O(Re) and σ , En and Et are all of order Re/I . The order of the flow rate for
a given small I can be determined from the condition that a substantial part of the
flow in the transition region should not recirculate if a stationary jet is to be formed.
Thus Q = O(vR2) = O(I 4/Re3). The inertia of the liquid is negligible in the transition
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region because (v2/R)/(v/ReR2) =O(I 2) � 1. The inertia should remain negligible in
the leading part of the jet, for x � I 2/Re2, where the electric shear acting on the
surface is to be balanced by a streamwise variation of the pressure rather than by an
acceleration of the liquid. In this region of the jet,

vr2
s ∼ Q, σvrs ∼ I, p ∼ 1

rs

,
p r2

s

x
∼ σEtrs, Et ∼ 1

x1/2
, (3.6)

expressing the conservation of mass and electric current, the balance of pressure
and surface tension at the surface, the x-momentum equation integrated across the
jet (effectively d(πr2

s p)/dx ≈ 2πrsσEt ), and the fact that the axial electric field is
dominated by the contribution of the electric charge at the surface of the cone. From
these order-of-magnitude balances,

rs = O

(
Q

Ix1/2

)
, v = O

(
I 2x

Q

)
, σ = O

(
1

x1/2

)
, p = O

(
Ix1/2

Q

)
, (3.7)

which were first derived by Cherney (1999b). The ratio v2/p = O(I 3x3/2/Q)
becomes of order unity, and the inertia of the liquid comes into play in the
integrated momentum equation, when x = O(Q2/3/I 2). Further downstream, the fourth
condition (3.6) should be replaced by the third condition (2.9) and the solution takes
the asymptotic form (2.10).

According to the estimates calculated in this section, the electric current is essentially
the surface convection current in the region of the cone Re � R � I 2/Re2 where (3.5)
holds, but the capability of the bulk–surface charge exchange to rapidly modify the
distribution of surface charge in response to a perturbation that lets the electric
field enter the liquid is lost for R � I 2/3. The existence of a solution of the type
described here depends on the assumption that the flow can negotiate the region
I 2/3 � R � I 2/Re2, which is not obvious. The pseudotransient numerical method that
has been used cannot follow a real transient, but it first fails to converge immediately
upstream of the transition region when Q is decreased.

3.5. Creeping flow

The Reynolds number defined in (2.8) is small for a number of liquids of high
viscosity or high electrical conductivity used in some experiments, for example in the
experiments carried out by Fernández de la Mora & Loscertales (1994) with ethylene
glycol and triethylene glycol. The limiting form of the solution of the problem
formulated in § 2 for Re → 0 is therefore of interest. A limiting problem can be
obtained by introducing the rescaled variables (x/Re, v/Re, Re p, Re1/2σ , ϕi/Re1/2,
ϕ/Re1/2, Q/Re3, I/Re3/2) into (2.5)–(2.7) and (2.11)–(2.12) and then letting Re → 0.
This amounts to replacing the original scaling factors (2.4) by

Q′
0 =

ε2
0γ

3

µ3K2
, R′

0 =
ε0γ

µK
, v′

0 =
γ

µ
,

E′
0 =

µ1/2K1/2

ε0

, I ′
0 =

ε0γ
2

µ3/2K1/2
, ϕ′

0 = E′
0R

′
0, σ ′

0 = ε0E
′
0,

 (3.8)

which can be obtained from balances similar to those that led to (2.4) except that
now the inertia of the liquid is not important and 	p = O(µv′

0/R
′
0). The limiting

problem differs from the original problem in that: (i) the convective acceleration v · ∇v

disappears from the left-hand side of (2.5b); (ii) the factor Re changes to unity in
this equation, in (2.12) and in the expression of the viscous stress tensor; and (iii) the
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Figure 6. Electric current as a function of the flow rate for β = 5 and 50 in the absence of
fluid inertia (Re = 0). The dashed curves are the results of figure 5(a) for Re = 1, which are
repeated here for comparison.

downstream boundary conditions (2.10) change to (3.7), which follow from (3.6) when
the electric shear is balanced by a pressure rise rather than by an acceleration of the
jet. In the remainder of this section the rescaled variables will be denoted with the
same symbols as used before for the original non-dimensional variables. The limiting
problem contains the two non-dimensional parameters Q and β .

The rescaled electric current I computed numerically is plotted in figure 6 as a
function of the rescaled flow rate Q for two values of β . As in the general case,
the electric current increases nearly as the square root of the flow rate. The curve of
figure 6 for β = 50 is indistinguishable from a parabola for Q greater than about 10,
but the value of I/Q1/2 is less than a half of the experimental value of Fernández
de la Mora & Loscertales (1994). The discrepancy is due to the inertia of the liquid.
In fact, it is not Re alone, but also the flow rate, that determine the influence of the
inertia in a given experiment. It should also be noticed that the largest values of Q

in figure 6 correspond typically to dimensional flow rates far smaller than in real
experiments, because the scaling factor Q′

0 in (3.8) is extremely small.
The asymptotic estimates of § 3.2 for large flow rates need be revised in the absence

of inertia. The characteristic size of the region where the liquid surface departs from
a cone is now Rc = Q1/2, and the characteristic values of the velocity of the liquid
and the electric field of the gas in this region are vc =1 and Ec = Q−1/4. These modi-
fied estimates follow from the condition that the characteristic velocity vc = Q/R2

c

should originate normal viscous stresses and pressure variations (of order
vc/Rc = Q/R3

c ) sufficiently strong to upset the balance of normal electric stress and
surface tension (both of order 1/Rc). Further estimates along the lines of § 3.2 show
that, when Q � β2 (the case 1 � Q � β2 will be discussed below): (i) the surface
convection current is small compared with the bulk conduction current in this region;
(ii) the surface charge screens the liquid because the residence time is large compared
with the electric relaxation time; and (iii) the surface is nearly an equipotential
and the electric shear is small compared with the normal stress, so that the liquid is
pushed into the jet by a local depression rather than by the electric shear.
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In the jet, of radius rs(x) � Q1/2, the velocity is v ≈ Q/πr2
s . The streamwise

variation of this velocity leads to radial viscous stresses of order v/x (because
∂vr/∂r = O(∂v/∂x) from the continuity equation), which is also the order of the
axial pressure variations (from the momentum equation integrated across the jet).
The balance of these stresses and the normal electric stress at the surface requires
E2

n = O(v/x), whence En = O(Q1/2/x1/2rs). On the other hand, taking σ ≈ En, the
condition that the surface convection current (Is = 2πσrsv) and the bulk conduction
current (Ib = πr2

s E
i
x) be of the same order, with Ei

x = O(1/x1/2) due to the surface
charge of the cone, is satisfied for rs of the order of rst

= Q3/8, which corresponds to
the bulk-to-surface current transfer region. At variance with the results of § 3.2, this
region is not much longer than the region discussed in the preceding paragraph. This
is a consequence of the condition introduced in § 3.2, that the axial field induced by the
charge of the jet should balance the field of the cone – of O(1/x1/2) – in the leading
region of the jet where conduction in the bulk dominates surface convection. The axial
field associated with En above is of order ln(rs/x) d(Enrs)/dx = O[ln(rs/x) Q1/2/x3/2],
because the jet acts as a line charge. The condition that this field should be of
O(1/x1/2) gives rs/x decreasing exponentially with x/Q1/2 from rs = O(Q1/2) in the
non-slender region of the preceding paragraph to rs = O(Q3/8) in the bulk-to-surface
current transfer region of the jet. It is therefore appropriate to take x = O(Q1/2) in
both regions, up to factors of order ln Q. In the bulk-to-surface current transfer
region, using the estimate of rs above, v = O(Q1/4), p = O(1/Q1/4), En = O(1/Q1/8),
and Ex = O(1/Q1/4), while the order of magnitude of Is and Ib is I = O(Q1/2). It
is also in this region that the electric shear σEt begins to have importance and to
increase the pressure of the liquid, because p r2

s ∼ σEtrsx, both being of order Q1/2.
The effect of the surface tension is still formally small. It comes back into play for
x = O(Q), after a region where the electric shear-induced pressure variation and the
normal viscous stress balance each other and lead to rs = O(Q3/4/x3/4). The final
asymptotic regime described by (3.7) is attained for x � Q.

The estimates above rely on the assumption that the free charge at the surface of
the jet is screening the liquid from the outer axial field in the region where the radius
decreases from rs = O(Q1/2) to rs = O(Q3/8). With σ ≈ En in this region, the normal
electric field that is required at the liquid side of the surface in order for conduction to
follow the variation of Is can be estimated via (2.7c), as has been done in the second
paragraph of § 3.3. The result is now Ei

n = O(Q3/4/r3
s ), and thus βEi

n/En =
O(βQ1/2/r2

s ), where x has been replaced by Q1/2 in the estimates at the beginning
of the preceding paragraph. The condition σ ≈ En requires that βEi

n/En � 1 for any
rs � rst

. This condition is satisfied when Q � β4, which imposes a lower bound on the
flow rate. If β � 1 and Q � β4, then βEi

n becomes comparable to En when the radius
of the jet is still of the order of rse

= β1/2Q1/4 � rst
, in a region where Is = O(Q3/4/β).

The density of free surface charge cannot increase at the pace of En beyond this
point, and the screening of the liquid depends entirely on the polarization charge at
its surface. The cause of the polarization is to be sought in the electric field in the
liquid, where ∇ · Ei = 0 requires Ei

x/x ∼ Ei
n/rs in orders of magnitude. This condition,

along with βEi
n ≈ En, the screening condition Enrs/x ∼ Ex ∼ 1/x1/2 (up to logarithms),

and the stress-balance condition v/x ∼ E2
n , give now x =O(Q1/2), En = O(Q1/4/rs)

and Ei
x = O(Q3/4/βr2

s ). The axial field in the liquid, whose streamwise variation causes
the radial field Ei

n that polarizes the surface, becomes of the order of the axial field
Ex = O(Q−1/4) induced by the charge of the meniscus when rs =O(Q1/2/β1/2), in a
region where (Ib, Is) = O(Q3/4/β). The screening condition need not be satisfied
further downstream, where Ei

x ≈ Ex = O(1/x1/2) (for x � Q1/2). Carrying this axial
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field to ∇ · Ei = 0 gives En ≈ βEi
n = O(βrs/x

3/2). In addition, the last term of (2.7a)
comes to dominate the normal electric stress, so that the stress balance condition
changes to v/x ∼ βE2

t . The density of free surface charge estimated from the condition
of conservation of the current is σ = O(I/rsv) = O(rs/βQ1/4) (using I = O(Q3/4/β)).
It becomes of the order of En when x = O(β4/3Q1/6). This is followed by another
region where, under the action of the electric shear, the pressure and normal viscous
stress become much larger than the normal electric stress and balance each other, as in
the analogue region of the case Q � β4 discussed before. The balance v/x ∼ σExx/rs

yields rs = O(β1/2Q5/8/x3/4), which applies until surface tension comes back into play,
at x = O(Q3/2/β2), and the solution enters the asymptotic regime (3.7).

The value rse
= β1/2Q1/4 of the characteristic radius of the jet for which βEi

n/En =
O(1) and the characteristic size Rc = Q1/2 of the non-slender region where the surface
departs from a cone coincide when Q = β2. When 1 � Q � β2, electric relaxation has
already ceased to be effective in the meniscus, at distances from the apex of order
Re = (βQ)1/3 � Rc, where the free surface charge fails to screen the liquid and the
current freezes at I = O(Q1/2/β1/2). These are the scales of the relaxation region and
the electric current derived by Fernández de la Mora & Loscertales (1994), which
have been discussed in the last paragraph of § 3.3. In the absence of electric relaxation,
the polarization charge must take over in the rest of the meniscus, for R � Re, and in
the jet. The estimates of the preceding paragraph apply in the jet also for this case.
The only differences arise beyond the region of rs = O(Q1/2/β1/2) where the axial field
induced by the cone first enters the jet. Now the effect of the surface tension begins
to be important for x = O(β1/2Q1/2). Surface tension takes care of the pressure and
normal viscous stress in a region that extends from these distances to x = O(βQ1/3),
where the density of free surface charge finally becomes of the order of En and the
electric shear begins to have importance. The asymptotic regime (3.7) is obtained for
x � βQ1/3.

4. Conclusions
The cone-to-jet transition region of an electrospray operating in the cone–jet mode

has been studied numerically and asymptotically. When this transition region is small
compared with the size of the meniscus and the length of the jet, the local flow and
the electric current depend only on the flow rate non-dimensionalized with ε0γ /ρK

and the two non-dimensional parameters (2.8), which are properties of the liquid. The
surface of the liquid tends to a Taylor cone upstream of the transition region and to
a slowly varying jet downstream of the transition region.

Numerical computations of the local flow show a recirculation bubble in the
transition region that recedes toward the cone when the non-dimensional flow rate
is increased. The electric current carried by the jet increases monotonically with the
flow rate.

The asymptotic structure of the solution for large values of the non-dimensional
flow rate Q consists of an inviscid region of characteristic size proportional to Q2/3,
where the surface of the liquid is almost equipotential and the electric current is
dominated by conduction in the bulk, followed by a slender region of length and
width proportional to Q and Q1/2, respectively, where the bulk conduction current
becomes a surface convection current and the electric shear acting on the charged
surface is transmitted by viscosity to the whole cross-section of the jet and begins
to accelerate the liquid. The electric current in this asymptotic regime increases
proportionally to Q1/2 and is independent of the dielectric constant of the liquid.
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Conditions of applicability of these asymptotic results to liquids with large dielectric
constants are discussed qualitatively. A modified asymptotic structure of the flow in
the absence of fluid inertia suggests that the electric current is proportional to the
square root of the flow rate also in this case.

I am indebted to Professors A. Barrero and J. Fernández de la Mora for introducing
me to this problem and for their advice and ideas. Useful discussions with Professors
A. M. Gañán-Calvo and I. G. Loscertales are also gratefully acknowledged. This
work was supported by the Spanish Ministerio de Ciencia y Tecnologı́a project
BFM2001-3860-C02-02.
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